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Abstract 

We investigate the micro-determinants of portfolio gyrations in equity mutual funds that invest 
in emerging markets. Our analysis focuses on portfolio holding variations driven by asset 
managers’ decisions, rather than by price revaluation, and matches this information with a 
comprehensive set of 54 stock-level characteristics. Using gradient boosting models (GBMs), 
we explore the non-linear relationships between stock characteristics and portfolio adjustments. 
Our findings show that firms’ size and investment-related features, alongside equity stock 
attributes (e.g. market capitalization, traded volume, beta), are the most influential in explaining 
portfolio turnovers. Additionally, we provide evidence on how the relative importance of these 
characteristics shifts, based on sample partitions determined by market conditions (downturn 
vs recovery), investor type (institutional vs retail) and investment strategies (active vs passive). 
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1 Introduction1

The importance of mutual funds (MFs) in the global financial industry has significantly increased in

recent years. According to data from ICI (2024), the total net assets managed by regulated open-end

funds worldwide reached 68.9 trillion USD in 2023. This amount is equivalent to more than 135%

of the US market capitalization at the end on 2023 and represents a growth of approximately 160%

since the aftermath of the global financial crisis.

Several factors have contributed to the expansion of the MF industry. These include tighter bank-

ing regulations, which have shifted some financial intermediation to the non-banking financial sector,

along with investors’ appetite for innovative financial products and diversified investment strategies.

Additionally, mutual funds provide relatively low-cost access to international markets, particularly in

emerging markets. The growing participation of institutional, long-term-oriented investors has also

played a role in sustaining this trend. However, these structural changes have not come without risks.

Numerous academic studies and policymakers have highlighted potential vulnerabilities within the

MF industry, such as liquidity mismatches due to daily redemptions, increasing concentration and

similarities across MF portfolios, high interconnection with the broader financial market despite less

intensive prudential oversight, and the absence of access to central bank liquidity facilities or other

investor insurance schemes (see Jotikasthira et al., 2012, IMF, 2015, IOSCO, 2018, Fricke and Fricke,

2021, Falato et al., 2021, FSB, 2023 among many others).

The interplay between financial stability considerations and MFs is particularly relevant for emerg-

ing market economies (EMEs). These countries are generally more dependent on foreign capital,

sensitive to global financial conditions - particularly monetary policy in advanced economies - and

have local financial systems that are less resilient to shocks or are characterized by a less diverse local

investor base (IMF, 2016; Cerutti et al., 2019; Koepke, 2019; BIS, 2021). During past episodes of

financial turbulence and local shocks to emerging market economies, redemptions from MFs investing

in EMEs have often been the most apparent sign of investors’rising risk aversion, exacerbating and
1We thank Alessio Anzuini, Raffaele Gallo, Marco Taboga and seminar participants at Banca d’Italia for their

suggestions. All remaining errors are our owns
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amplifying already tense market conditions (e.g., Gelos, 2011, Puy, 2016, Chari et al., 2021, Ferriani,

2021, Ferriani et al., 2023). The most recent and significant episode in this regard is the COVID-19

financial turmoil, during which portfolio outflows from EMEs exceeded 100 billion USD from January

to March 2020, approximately 3.5% of the corresponding international investment positions (IMF,

2020, FSB, 2020, Eguren Martin et al., 2020, Ferriani and Natoli, 2021).

In this paper, we apply machine learning (ML) techniques to a novel dataset containing detailed

information on the portfolio holdings of equity mutual funds investing in EMEs. Our aim is to

identify the firms’ characteristics that are most significant in explaining the variation in portfolio

allocations. To achieve this, we first isolate the variation in portfolio holdings that can be attributed

to asset managers’ decisions, removing the component linked to market price changes. We combine

this information with a comprehensive dataset of 54 variables, grouped into seven macro-categories,

encompassing both high- and low-frequency firm characteristics. Our analysis spans the period from

January 2019 to June 2020, covering not only the major financial turmoil caused by the Covid-19

pandemic in early 2020 and the subsequent market recovery following global policy interventions, but

also a more stable period throughout 2019, when a favorable macroeconomic environment supported

investor flows into EMEs. This also allows us to study whether portfolio gyrations by managers can

be explained by different groups of firm characteristics across distinct market regimes.

For our study, we employ gradient boosting (GB), a machine learning approach capable of handling

large datasets non-parametrically. This technique enhances model accuracy by recursively combining

weaker models, such as simple decision trees. Given an information set, boosting methods assign

more weight to more successful models, leading to a highly accurate final performance based on the

combined ensemble of previous models in the sequence. Our findings reveal that variables related

to size, investment, and equity stock attributes (e.g., market capitalization, traded volume, market

beta, spread) are the most influential in explaining portfolio turnovers. The prominence of these

variables may reflect, on one hand, behavioral tendencies in fund management, with managers basing

their portfolio adjustments on dimensional factors that highlight well-established, large companies

traditionally perceived as safer. On the other hand, the strong influence of attributes tied to trading
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activity and asset performance increases sensitivity to fluctuations, potentially amplifying portfolio

turnover during periods of instability as managers shift their focus from fundamentals to ongoing

market signals.

We conduct our analysis at both the full sample level and through several sample partitions,

focusing on investment strategies (active vs. passive mutual funds), investor types (institutional vs.

retail), and market conditions (downturn vs. recovery) to identify potential variations in asset man-

agers’ behavior. While variables related to size and market features consistently play a predominant

role, we observe some heterogeneity across different sample partitions. Additionally, for a selected

set of variables, we perform exercises based on variable permutation and local effects to demonstrate

how the overall model performance responds to changes in specific variables.

In this paper, we aim to bridge two strands of literature. The first, as previously mentioned,

relates to the analysis of MFs behavior in EMEs in response to monetary policy announcements

or other episodes of market turmoil, with potential implications for financial stability and cross-

country spillovers. We particularly focus on the Covid-19 period because of its significance in the

recent history of market turmoil episodes. The validity of our research is nevertheless assured by the

inclusion of adjacent time spans with different market conditions, and our approach can be generally

extended to any time period. The second, more novel and rapidly growing strand of literature

examines the role of machine learning (ML) and artificial intelligence (AI) techniques in identifying

the most critical characteristics for portfolio asset selection, trading signal detection, asset pricing,

and equity return forecasts (see, for example, Leippold et al., 2022, Li and Rossi, 2020, Kaniel et al.,

2023, DeMiguel et al., 2023, Bonelli and Foucault, 2023, Zhang et al., 2023, Chen and Ren, 2022).

These considerations have also recently entered the policy debate (IMF, 2024), raising concerns about

potential financial stability risks stemming from the application of ML and AI in asset allocation and

trading, such as increased turnover, higher asset correlations, volatility amplification, and operational

and cyber risks.

To the best of our knowledge, this is the first paper to apply ML techniques to analyze the relation-

ships between a large set of stock-level features and changes in the portfolio holdings of mutual funds.
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Unlike previous studies (e.g., Li and Rossi, 2020), which focus on selecting high-performing mutual

funds based on average fund-level exposures to a broad range of stock characteristics, our approach

delves into the micro-determinants of portfolio rebalancing without aggregating at the portfolio level.

ML techniques prove essential in this context, as they are better suited than conventional analytical

tools to capture potential nonlinear relationships among variables and to handle large datasets with

multiple determinants. In turn, this allows for a cleaner and more granular identification of the

factors driving portfolio changes, providing deeper insights into asset managers’ behavior, particu-

larly during periods of financial market shocks. From a policy perspective, the growing adoption of

ML techniques - and potentially generative AI - presents opportunities for supervisors and market

surveillance to enhance risk assessment frameworks, develop vulnerability indicators, and improve

performance driver analysis through multidimensional methods (IMF, 2024). Our study contributes

to this debate by offering an empirical application that can be extended to other types of financial

assets and integrated into supervisory monitoring frameworks, enabling a more data-driven approach

to identifying emerging risks and mitigating procyclicality. This is particularly relevant for MFs

investing in EMEs, where abrupt outflows or sudden shifts in fund managers’ allocation patterns,

driven by changes in investor risk aversion, can rapidly exacerbate market instability.

The rest of the paper is organized as follows. Section 2 introduces the dataset, Section 3 presents

the machine learning technique adopted in the analysis, while Section 4 illustrates the main empirical

results. Finally, Section 5 offers some concluding remarks and policy implications.

2 Data

We base our analysis on equity mutual funds investing in emerging market economies (EMEs),

classified under the Morningstar category "Global Emerging Markets Equity," covering the period

from January 2019 to June 2020. The use of mutual funds’ portfolio holdings can significantly expand

the dataset’s dimension; our relatively short time span keeps it manageable while still offering a

sufficiently broad and diverse sample to observe portfolio gyrations across different market conditions.
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Similar to Li and Rossi (2020), we apply filters to the original sample, excluding funds with an

average size smaller than 20 million USD, those with less than 80% of their portfolio invested in

equities, and those with an inception date less than one year before the start of our sample. We

then use Morningstar’s database of historical holdings to obtain monthly data on the funds’ portfolio

holdings (quantities in terms of shares and relative weights). Our analysis focuses solely on the equity

component, as we aim to match these holdings with firm characteristics to identify the micro-drivers

of portfolio gyrations. For each fund, we limit the analysis to the first 150 positions in the monthly

holdings. We believe this choice strengthens our analysis for several reasons. First, these funds

typically exhibit concentrated portfolios with a relatively small set of equity stocks; in fact, the top

150 equity positions account for a median share of around 94% of total portfolio investments. Second,

very small equity shares often correspond to smaller emerging market firms, making it difficult to

retrieve a comprehensive list of corporate characteristics, which is crucial for this study. Lastly,

focusing on very small holdings may inflate our sample with discontinuities and staggered values of

share turnovers. Based on data availability, our final dataset consists of 762 unique MFs investing in

3,552 different stocks.

Each stock is uniquely identified by its ISIN, which is used to retrieve firm characteristics from

LSEG. Our study is based on a comprehensive set of more than 50 stock-level characteristics; similar

to Li and Rossi (2020) and Hou et al. (2020) we chose to group these characteristics into seven macro-

categories: company information, liquidity, market, profitability, solvency, size and investment, and

rating. The full list of variables is provided in Table A.1 in the Appendix and combines both high-

and low-frequency characteristics (i.e., monthly, annual, time-invariant). We complement this dataset

with fund-level information such as total assets under management, investment strategy (e.g., passive

vs. active), and investor type (i.e., distinguishing between funds targeting either retail or professional

investors). This information will be used in the empirical section to replicate the analysis on specific

dataset partitions and explore potential heterogeneity in managers’ behavior. Additionally, we use

LSEG to obtain the average monthly stock price for each ISIN.2

2Results remain qualitatively unchanged when using the month-end closing price instead of the average.
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Our final sample consists of more than 1.4 million observations, providing, for each fund and

month, detailed information on the quantities and prices of each ISIN held in the fund’s portfolio. We

aim to study how variations in the fund’s portfolio holdings can be explained by firms’ characteristics.

In other terms, we need to compute monthly net purchases carried out by each mutual fund and to

this purpose we distinguish changes in portfolio holdings due to market price revaluation from those

associated with managers’ decision that represent actual financial transactions. Similar to Affinito

and Santioni (2021), we measure the revaluation effect as follows:

revj,i,t = (pj,t − pj,t−1) ∗min(qi,j,t, qi,j,t−1)

where rev refers to the revalution component of a generic share j included in the portfolio of fund

i at month t, whereas p and q are respectively the average monthly price of stock j and its quantity

held in the portfolio of fund i. We then measure the net purchase component by subtracting the

price revaluation dimension from the overall portfolio variation associated to each asset:

traj,i,t = (pj,t ∗ qi,j,t − pj,t−1 ∗ qi,j,t−1)− revj,i,t

where tra accounts for the part of portfolio gyrations that is associated with the fund managers’

transactions and represents the main object of our investigation. In the following section, we will

describe the ML techniques used to examine how variations in this component may be explained by

firms’ individual characteristics. The descriptive statistics for the target variable and for the other

features used by our ML approach are available in Table A.2.

3 Methods

We use ensemble learning tree methods to analyze the main determinants of mutual funds’ investment

strategies. Ensemble learning refers to a class of ML approaches that combine multiple models to

enhance predictive performance. Ensemble learning often considers regression trees as building blocks
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HYPER-PARAMETER CANDIDATE VALUES BEST
Learning rate Unif(0.001, 0.1) 0.009
Boosting rounds [100, 150, ..., 500] 200
Number of leaves (max) [5, 6, ..., 100] 52
Tree depth (max) [3, 4, ..., 20] 18
Observations per child (min) [1, 2, ..., 5] 1
Training instances per tree (sample ratio) [0.3, 0.35, ..., 0.5] 0.4
Training features per tree (sample ratio) Unif(0.1,0.3) 0.189
Training features per level (sample ratio) Unif(0.5, 1.0) 0.848
L1 regularization parameter Unif(0,1) 0.234
L2 regularization parameter Unif(0,1) 0.617

Table 1: Optimal value of main hyper-parameters derived with k-fold cross-validation tuning routine,
k=8. The number of leaves is key to control complexity in LightGBM. The learning strategy used
by LightGBM would theoretically set the value equal to 2maximum depth(= 128). However, practical
performance often benefits from setting the value lower, to prevent overfitting and achieve better
accuracy.

since they offer several advantages. Among others, they efficiently handle complex tabular datasets

with multicollinearity, missing values, and outliers. Importantly, the training process of regression

trees encompasses automatic feature selection, which can support the identification of the most

influential factors driving investment decisions.

Ensemble learning approaches can be broadly classified into two categories: boosting or bag-

ging. Boosting generates sequences of weak models, each learning from the residuals or errors of

its predecessors to improve performance. Bagging, on the other hand, trains more complex models

independently on random subsets of data and then combines their predictions. Our analysis relies on

the well-established ensemble class of gradient boosting (GB) models Friedman (2001). GB methods

iteratively partition the feature space by building a sequence of weak models, with each learning from

the residuals of the previous one, progressively refining overall performance.3

GB methods excel at handling complex datasets, automatically performing feature selection, and

achieving high predictive accuracy. However, they can be prone to overfitting if not carefully tuned.4

3A popular tree-based ensemble method based on bagging is the so-called Random Forest Breiman (2001), which
aggregates deep uncorrelated trees. Random Forest tends to be less accurate than GB methods on complex datasets.

4Overfitting occurs when a model learns the training data too well, capturing noise and random fluctuations
instead of underlying patterns. This leads to poor performance on new, unseen instances. The opposite of overfitting
is underfitting, which occurs when the model fails to capture relevant patterns even in the training data.
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Additionally, the iterative nature of GB methods can result in higher computational costs compared

to other ensemble techniques. To mitigate these limitations, we employ LightGBM Ke et al. (2017),

a GB framework designed to improve predictive performance and scalability for large datasets.

LightGBM leverages two main techniques during training: Gradient-Based One-Side Sampling

(GOSS) and Exclusive Feature Bundling (EFB). GOSS accelerates training by focusing on data

instances with larger gradients, whereas EFB efficiently handles categorical features. LightGBM

differs from standard GB as it builds each tree in the sequence by iteratively selecting the leaf

node with the largest potential gain at each step. This approach leads to deeper yet narrower trees

compared to the traditional approach that builds the tree level by level.

While LightGBM is a powerful and efficient gradient boosting framework, other strong contenders

exist in the field. Notable alternatives include XGBoost (Chen et al., 2015), that enhances perfor-

mance accuracy by efficiently minimizing a regularized objective function but whose learning process

relies on a level-wise splitting approach, and CatBoost (Prokhorenkova et al., 2018), which is suited

to handle complex datasets with numerous categorical features without requiring extensive prepro-

cessing.

We randomly split observations into a training set (80%) and hold out a test set for validation

(20%), corresponding to 292,365 observations and 73,292 records respectively. Since our application

aims to assess the main drivers of portfolio managers, we don’t rely on a test set, to check out-

of-sample performance but still leverage the validation set to enhance learning of externally valid

representation rule of the feature set, i.e. to avoid overfitting. Our training strategy entails a tuning

routine to define the optimal architecture of our GB model Hastie (2009). Tuning is carried out

using k-fold cross-validation (k = 8) over a sparse grid of hyper-parameters.5 We identify optimal

hyper-parameter values by optimizing the quadratic loss function associated with each combination.

Hyper-parameters include the number of boosting rounds, i.e. the maximum length sequence of trees,

trees’ characteristics, and regularization parameters (see Table 1). Given an optimal combination of

hyper-parameters, we train our model. We finally validate its performance on the hold-out set.
5Our tuning routine randomly samples hyper-parameter values from their respective candidate set. We set the

number of evaluation rounds equal to 1’000, i.e. 1’000 combinations of hyper-parameter values.
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Figure 1: The figure displays basic training diagnostics for the baseline Gradient Boosting model.
Top-panels show convergence of the L2 loss function optimized by learning routine (left); the gain
associated with internal splits for each tree in the sequence (median, first and third quartile values;
right). Bottom-panels show maximum depth of each tree in the sequence (left); the distribution of
instances across leaves (median, first and third quartile percentage values; right).

We train our LGBM using GOSS boosting type for 200 boosting rounds.6 Figure 1 shows our

training strategy leads to a decreasing splitting gain trend throughout the boosting rounds, indicating

effective learning and progressive refinment. Descreasing splitting gains associate with a slightly

increasing pattern in tree depth, suggesting that the model was able to capture increasingly complex

patterns in the data. The left-skewed distribution of leaf weights further supports the model’s ability

to prioritize informative splits and allocate appropriate weights to different decision paths.

4 Results

In this section, we present the main empirical results on the stock-level characteristics driving portfolio

gyrations. We rely on established explainable artificial intelligence (XAI) tools to gain insights into

the logical mechanism underlying the functioning of our general GB model, as well as its local

specifications. XAI techniques can broadly be classified as either global or local: global methods
6GOSS boosting type efficiently handles imbalanced datasets by focusing on gradient information of instances with

large gradients, thereby reducing computational cost and improving model performance.
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provide insights into the overall behavior of a model, while local methods focus on understanding

why a model made a specific decision in a given instance.

4.1 Variable importance

We begin by using global XAI techniques to examine variable importance (VI), which is a byproduct

of tree-based models. VI is a quantitative measure that evaluates the relative contribution of each

feature to the model’s predictive performance. By scoring each feature based on its role in building

each tree throughout the GB sequence, VI helps identify the variables with the most significant impact

on the outcome. LightGBM provides two primary VI metrics: split gain and split frequency VIs.

While both metrics can assess feature importance in ensemble tree methods, they capture different

aspects. Split gain VI measures the reduction in impurity measures attributable to splitting on a

particular feature across all trees in the ensemble. Split frequency VI, on the other hand, tracks how

often a feature is chosen for splitting across all decision trees in the ensemble. Given our objective of

identifying features most strongly associated with the target variable tra (quantity effect), we focus

on split gain VI for our analysis.

Baseline results are displayed in Figure 2, which shows the top 20 stock-level characteristics in

terms of VI. The values are normalized to sum to one to facilitate the interpretation of the relative

importance of each characteristic; A complete graph of all stock-level characteristics is provided in

Figure A.1 in the appendix. The top 20 most influential variables, representing less than half of the

total number of covariates, account for a substantial share of the overall variable importance, over

67% Although there is some heterogeneity in terms of relative influence, no characteristic emerges

as overwhelmingly more important than the others, and no covariate is entirely excluded by the GB

model. The three most influential variables are reinvestment rate7, market capitalization, and the

debt to capital ratio, all with a VI of around 6.5%; the VI gradually decreases across the remaining

stock characteristics reaching approximately 0.6-0.7% for the least influential ones (see Figure A.1),

namely P/E ratio, total cash, and P/BV ratio. In Figure 3a we also present the breakdown of VI
7Reinvestment rate is computed by dividing retained earnings by common equity.
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Figure 2: Figure reports the top-20 stock-level characteristics in terms of variable importance. The
variable importance is normalized to sum to 1 across all 54 characteristics. Refer to Table A.1 for
the full list of variables.

across the 7 categories we used to classify firms’ characteristics (see Gu et al., 2020, Li and Rossi,

2020 for analogous classifications). Clearly, the VI breakdown across categories partly reflects the

relative number of variables within each category (as shown in Table 3b). That said, the overall VI

of variables related to size and investment, market, and solvency is more than proportional to their

relative share, a result that is partly in line with the findings of Gu et al. (2020) and Leippold et al.

(2022), who use machine learning techniques to identify predictive factors for asset premiums and

returns. Conversely, the opposite is true for profitability and company-related information, where

the overall VI is less than proportional to the share of variables in these categories.

To assess the feature importance of macro-categories of stock level characteristics we also rely on

model agnostic XAI techniques. These methods are applicable to any type of model, providing a

complementary perspective to model-specific approaches like VI. By comparing the VI rankings ob-

tained from both model-specific and agnostic methods, we can enhance the robustness of our feature

importance analysis. We base our analysis on permutation variable importance (PVI), which mea-
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(a) Variable importance by category

Category Share (%)

Company information 5.6%
Liquidity 16.7%
Market 24.1%
Profitability 18.5%
Rating 3.7%
Size and investment 20.4%
Solvency 11.1%

(b) Variable breakdown by category

Figure 3: Figure 3a displays the variable importance of the 54 stock-level characteristics classified
in 7 categories: company information, liquidity, market, profitability, solvency, size and investment,
and rating. Table 3b shows the share of variables included in each category.

sures the decrease in model performance when the values of a specific feature are randomly shuffled,

thereby breaking the relationship between the feature and the target variable while preserving the

marginal data distribution (Molnar, 2020).8 A significant drop in the average performance indicates

the relevance of a feature for model predictions. The results, shown in Figure 4, confirm that model

performance is largely driven by variables in the market, and size and investment categories. At the

feature level, dropping information on asset growth and change turnover volume is associated with

most relevant deterioration in average performance.

4.2 Accumulated local effects

We then use accumulated local effects (ALEs) Apley and Zhu (2020) to gain insights on the extent

and the direction of the impact of changes in input variables toward the output of our machine

learning model. ALEs measure the marginal effect of each input variable on the model predictions,
8To avoid potential bias caused by specific random seeds, PVI repeatedly shuffles the values of one feature at a

time and re-evaluates the model’s performance over m iterations, m = 100 in our setup. One hot-encoded categorical
features are excluded from the permutation, to avoid inconsistencies.

16



Figure 4: The figure displays the permutation variable importance (PVI) by categories of stock-level
characteristics. Lower PVI values indicate a higher relevance of the variable category in explaining
portfolio gyrations. Variables in the "Company Information" category are excluded from the PVI
due to their categorical nature.

while holding all other variables constant. Let XA be a continuous feature defined over domain XA

whose minimum observed value is xA,0, and let X−A be the set of all features except XA. ALEs are

derived for each value xA ∈ A as:

fA,ALE(xA) =

∫ xA

xA,0

EX−A
[f ′(XA,X−A)|XA = x] dx− c

where f ′ is the local effect of xA on f , i.e. the partial derivative in x1 of f , the distribution

mapping input features into model outputs, and c is a constant. In essence, fA,ALE(xA) quantifies the

deviation of the model’s output from its average behavior when feature XA = xA. By accumulating

17



Figure 5: Figure reports the accumulated local effects (ALEs) for firm leverage (upper panel) and the
stock beta (lower panel). Coloured bars represent the sample distribution of the analysed variables.

these deviations across different intervals of XA, ALEs measure how model predictions change as

the feature value varies within its domain range. This cumulative perspective offers insights into

the feature’s impact on the model predictions, including the direction of the effect. Furthermore, it

enables to identify non-linear relationships between input and output variables.9 Figure 5 presents the

ALE plots for two representative variables, the leverage (upper plot) and the stock market beta (lower

plot). Both plots are indicative of how ALE tools can be useful to detect and interpret nonlinearities
9An alternative approach providing insights similar to ALEs’ is represented by partial dependence plots (PDPs).

PDPs compute the marginal effect of a feature on the predicted outcome by averaging the model’s predictions over all
possible combinations of the other features. While PDPs offer a straightforward way to understand feature relation-
ships, they don’t properly take into account characteristics of the joint distribution of input features. As such, they
average over unrealistic combinations of feature values and fail to provide reliable insights when features are correlated.

18



in model features. We observe a non-linear, piecewise relationship between firm leverage and our

target variable. Positive portfolio gyrations are associated with extremely low levels of firm leverage

or moderately high levels, suggesting that fund managers may prefer stocks perceived as extremely

safe or offering a favorable balance between moderate risk and return. Conversely, at relatively low

leverage levels, the association is slightly negative, indicating that stocks with such leverage might

not be sufficiently remunerative to warrant inclusion in the portfolio. For firms with high leverage,

the association becomes strongly negative, reflecting a tendency for fund managers to reduce portfolio

exposure to companies perceived as excessively indebted and ultimately risky. The stock market beta

also exhibits a non-linear yet substantially monotonic negative relationship, with some fluctuations.

Positive portfolio gyrations are associated with relatively low beta values. However, as beta exceeds

1, the expected value of portfolio gyrations gradually decreases. Higher beta values, which occur

more frequently than low or moderate ones, contribute to negative portfolio gyrations. This pattern

suggests that fund managers tend to avoid firms that are highly responsive to market dynamics and

economic cycles.

4.3 Sample partitions

As a final exercise, we split our trained model across multiple dimensions to gain valuable insights into

local dynamics and identify potential variations in the role of different variables in explaining asset

managers’ behavior. Similar exercises, focused on identifying predictors for stock and mutual fund

returns, have revealed some heterogeneity in the results, with variations emerging when accounting

for time-varying dynamics and other sample partitions (DeMiguel et al., 2023, Leippold et al., 2022,

Li and Rossi, 2020). As discussed in the Introduction, the use of ML techniques in this context can

serve as a practical tool for supervisors and risk managers, helping to structure tailored indicators

and perform analyses that account for the diverse characteristics and features within the mutual fund

industry.
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Figure 6: The figure displays the distribution of the dependent variable tra broken down by values
(positive/negative) and time periods: standard, downturn, and recovery. The time periods are defined
as follows: standard (Jan-2019-Jan 2020), downturn (Feb-Mar 2020), recovery (Apr-Jun 2020).

Partitions based on market regimes

The first source of heterogeneity we explore is time, as the VI of stock-level characteristics can evolve

in response to changes in overall market conditions. To capture this, we partition the sample into three

distinct temporal regimes and independently train the models for the standard period (Jan 2019-Jan

2020), the downturn linked to the Covid-19 crisis (Feb-Mar 2020), and the recovery phase (Apr-Jun

2020). Figure 6 shows the distribution of the dependent variable - portfolio gyrations associated

with fund managers’ transactions - categorized by regime and the positive/negative values of the

variable of interest. Compared to the standard regime, the distribution of tra appears significantly

more dispersed during the downturn period for both positive and negative values. This suggests

that portfolio turnovers tend to reach more extreme levels during turbulent and volatile times. In

contrast, during recovery periods, the distribution resembles that of the standard phase; however,

the asymmetry between positive and negative values becomes more apparent, with positive portfolio

gyrations exhibiting greater dispersion during favorable market conditions.

Figure 7 shows the VI by category across these three market regimes. Overall, our results are
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Figure 7: The figure displays the variable importance of equity stock characteristics broken down by
time periods: standard, downturn, and recovery. The time periods are defined as follows: standard
(Jan-2019-Jan 2020), downturn (Feb-Mar 2020), recovery (Apr-Jun 2020). Stock characteristics are
grouped in macrocategories of interest, see Table A.1 for the whole list of variables.

consistent with the evidence presented in Figure 3a, though with some distinctions. Variables in

the market category are most influential during tranquil market periods and the recovery phase, but

their VI decreases significantly during the downturn phase. This reduction is partly offset by stock-

level characteristics in the size and investment category, whose VI increases during the downturn.

Variables related to firms’ liquidity and profitability maintain a similar VI across both standard

market phases and the downturn period, though their aggregate VI shrinks during the recovery phase,

where managers may prefer portfolio adjustments driven by market conditions, following momentum

and hoarding strategies. Finally, the VI assigned to ratings remains relatively small, but is generally

higher during stable market conditions, when limited market developments likely lead asset managers

to rely more on synthetic metrics.

Partions based on investment strategies and investor types

We then combine the temporal breakdown with an additional partition, splitting the sample based

either on investment strategies (active vs. passive funds) or investor type (retail vs. institutional

funds).10 The VI results are displayed in Figure 8 for stock characteristics across time and investor
10An institutional fund is a fund that meet at least one of the following qualifications: it has the word "institutional"

in its name; it has a minimum initial purchase of $100,000 or more; it states in its prospectus that it is designed for
institutional investors or those purchasing on a fiduciary basis. Active funds accounts for approximately 23% of
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type, and in Figure 9 for the breakdown by time and investment strategy .11 Some key findings

emerge. We observe that stock characteristics in the market category generally show a higher VI for

retail mutual funds compared to institutional ones, particularly during the recovery period. Market

variables also have the highest VI for institutional funds; however, portfolio turnovers for institutional

funds seem to place more relative weight on features in the size and investment and solvency categories

compared to retail mutual funds. Firm size generally exhibited a larger VI during the downturn

period for both categories of mutual funds, indicating that the firms dimension played a major role

in portfolio adjustments during the Covid-19 market collapse.

These results may be explained by the differing attitudes of the two types of investors (e.g. Ivković

and Weisbenner, 2009, Evans and Fahlenbrach, 2012, Salganik-Shoshan, 2016, Goldstein et al., 2017

among others). Retail investors tend to be more sensitive to changes in market conditions, which may

explain why market-related variables (e.g., market capitalization, volume, bid-ask spreads, market

beta) play a more significant role in explaining portfolio gyrations for these investors. This greater

reliance on market-driven variables can exacerbate volatility during downturns, amplifying market

stress and contributing to financial instability in periods of market turmoil. In contrast, institutional

investors typically follow long-term strategies that are less influenced by momentum trading and are

more focused on long-term market fundamentals.

Regarding investment strategies, market variables explain a substantial portion of portfolio ad-

justments, particularly for passive funds, where these features account for around 50% of the VI,

and nearly 60% during the market downturn. One possible explanation is that passive funds must

replicate the composition of equity benchmarks, sometimes even synthetically through stock surro-

gates, as long as they comply with geographic or sector constraints. This could explain why, given

these ex-ante limitations, managers’ decisions are primarily driven by market conditions rather than

firms’ fundamentals. Conversely, for active funds, portfolio managers are more involved in stock

selection, and as expected, we find that firm fundamentals-related variables generally exhibit a larger

our sample, compared to 77% for passive funds. Similarly, institutional funds make up 22% of the sample, while
non-institutional funds represent the remaining 78%.

11Comparability with the estimates reported in Figure 3a and Figure 7 cannot be fully ensured, as the classification
of funds by investor type and investment strategies is not always available.
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Figure 8: The figure displays the variable importance of equity stock characteristics broken down by
time periods (standard, downturn, and recovery) and investor types (institutional vs retail mutual
funds). The time periods are defined as follows: standard (Jan-2019-Jan 2020), downturn (Feb-Mar
2020), recovery (Apr-Jun 2020). Stock characteristics are grouped in macrocategories of interest, see
Table A.1 for the whole list of variables.

VI compared to passive mutual funds.

5 Conclusions

We employ machine learning techniques to analyze the micro-determinants of portfolio gyrations in

mutual funds. We focus on mutual funds investing in emerging markets, as these investments have

frequently been at the epicenter of past episodes of financial instability and market turmoil. We

isolate the portion of portfolio turnover directly attributable to managerial decisions and link it to

a broad set of firm-level characteristics. Using gradient boosting models - a family of tree-based
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Figure 9: The figure displays the variable importance of equity stock characteristics broken down by
time periods (standard, downturn, and recovery) and investment strategies (active vs passive mutual
funds). The time periods are defined as follows: standard (Jan-2019-Jan 2020), downturn (Feb-Mar
2020), recovery (Apr-Jun 2020). Stock characteristics are grouped in macrocategories of interest, see
Table A.1 for the whole list of variables.

methods - we shed light on the decision-making process of asset managers and identify the most

influential stock-level features driving portfolio adjustments.

Our findings indicate that characteristics related to size and investment, along with equity stock

attributes (e.g., market capitalization, traded volume, market beta, spread), exert the strongest

influence on portfolio turnovers. This pattern suggests that portfolio allocation decisions are are

significantly driven by proxies of corporate soundness (e.g., firm size) while also highlighting that

changes in allocation are highly sensitive to trading activity and asset performance, potentially am-

plifying turnover volatility during periods of market turmoil. We also identify two key ways in which

the relative importance of firm characteristics varies. First, we show that non-linear relationships
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exist between portfolio turnovers and stock-level variables, emphasizing the advantages of flexible,

data-driven methods such as ML in capturing these nonlinearities. Second, our results reveal that the

significance of specific stock-level variables is not fixed; rather, it shifts in response to market regimes

and other sample partitions, including funds’ investment strategies and targeted investor types.

This study offers a first application of machine learning techniques to analyze portfolio gyrations

and can be extended to comparable investments (e.g., funds investing in advanced economies or

bond funds). In this regard, machine learning techniques can provide insights into fund manager

behavior, demonstrating their potential for practical use in risk monitoring and supervision (IMF,

2024). Mutual funds, given their wide heterogeneity in terms of asset portfolios, investor composition,

and redemption schemes, offer an ideal field for such applications. The ability of machine learning

models to handle large, complex datasets and provide granular insights into asset manager behavior

presents a valuable opportunity for data-driven policymaking and the development of tailored risk

monitoring frameworks. These frameworks can dynamically capture the non-linear relationships

between a broad set of holding characteristics and changes in mutual fund portfolios. Supervisors

could then apply machine learning-based tools to devise targeted indicators and detect potential

imbalances in portfolio characteristics. This, in turn, could enhance supervisory frameworks and

help anticipate shifts in asset manager behavior, enabling more proactive interventions.
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A List of variables

1 Acid test Liquidity 28 Operating margin Profitability
2 Asset growth Size & investment 29 P/E ratio Market
3 Total assets Size & investment 30 PPE Size & investment
4 Beta Market 31 Price/Cash flow Market
5 Capital expenditure Size & investment 32 Price/Free cash flow Market
6 Capital expenditure/Revenues Size & investment 33 Price to book ratio Market
7 Cash flow/Operating income Profitability 34 Credit rating Rating
8 Cash Liquidity 35 R&D/Market value Size & investment
9 Cash ratio Liquidity 36 R&D/Sales Size & investment
10 Cash flow/Total debt Solvency 37 Analysts recommendation Market
11 Change in turnover Market 38 Revenues Profitability
12 Current ratio Liquidity 39 ROA Profitability
13 Total debt Solvency 40 ROCE Profitability
14 Debt/capital Solvency 41 ROE Profitability
15 Dividend yield Profitability 42 ROIC Profitability
16 EBIT/Total assets Profitability 43 Revenues/Total assets Size & investment
17 Total equity Solvency 44 Revenues/Cash Liquidity
18 ESG score Rating 45 Sales/Price Market
19 Fixed assets turnover Size & investment 46 Revenues/Receivables Liquidity
20 Fixed assets/Total assets Size & investment 47 Bid-Ask spread Market
21 Interest coverage ratio (ICR) Solvency 48 Industrial sector Company information
22 Investment rate Size & investment 49 State owned enterprise Company information
23 Leverage Solvency 50 Country of headquarters Company information
24 Market value Market 51 Turnover Market
25 Momentum Market 52 Price volatility Market
26 Operating income Profitability 53 Working capital turnover Liquidity
27 Operating cash flow ratio Liquidity 54 Working capital/Total assets Liquidity

Table A.1: The table presents the list of variables
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Variable Mean Standard Deviation
Portfolio gyrations by FMs’ transactions 69’209.86 995’967.46
Acid test 0.76 1.59
Asset growth 0.03 5.25
Total assets (USD billion) 36.29 64.71
Beta 1.02 0.48
Capital expenditure (USD billion) -2.39 5.56
Capital expenditure/Revenues -0.13 1.08
Cash flow/Operating income 1.39 3.40
Cash (USD billion) 1.50 3.83
Cash ratio 0.25 0.68
Cash flow/Total debt 81.88 2’299.46
Change in turnover 0.19 2.25
Current ratio 1.87 1.91
Total debt (USD billion) 7.30 14.43
Debt/capital 0.67 2.56
Dividend yield 3.39 5.33
EBIT/Total assets 0.11 0.09
Total equity (USD billion) 17.63 37.19
ESG score 53.03 18.81
Fixed assets turnover 48.25 3’128.48
Fixed assets/Total assets 0.30 0.22
Interest coverage ratio (ICR) 1’062.40 47’127.11
Investment rate 6.68 108.02
Leverage 0.20 0.16
Market value (USD billion) -2.39 5.56
Momentum 0.77 15.81
Operating income (USD billion) 3.41 7.87
Operating cash flow ratio 0.65 3.10
Operating margin -0.04 13.86
P/E ratio 35.20 371.74
PPE (USD billion) 13.18 32.71
Price/Cash flow 1.78 1e-5 12.90 1e-5
Price/Free cash flow 1.04 1e-5 6.86 1e-5
Price to book ratio 4.06 12.43
R&D/Market value 41’523.55 150’236.66
R&D/Sales 0.31 12.84
Analysts recommendation 66.12 25.68
Revenues (USD billion) 22.53 48.32
ROA 8.95 9.87
ROCE 0.16 0.15
ROE 16.44 156.44
ROIC 13.16 14.90
Revenues/Total assets 0.76 0.56
Revenues/Cash 135’833.50 3’396’406.91
Sales/Price 2.28 1e6 202.86 1e6
Revenues/Receivables 12.87 50.64
Bid-Ask spread 0.49 3.38
Turnover 48.23 3’127.67
Price volatility 0.33 0.15
Working capital turnover 4.49 293.62
Working capital/Total assets 0.16 0.18

Table A.2: The table presents the descriptive statistics for our dataset.
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Figure A.1: Figure ranks stock-level characteristics in terms of variable importance. The variable
importance is normalized to sum to 1 across all 54 characteristics. Refer to Table A.1 for the full list
of variables.
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